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Abstract
3D Gaussian Splatting (3DGS) has emerged as a promising representation for scene reconstruction and novel view synthesis
for its explicit representation and real-time capabilities. This technique thus holds immense potential for use in mapping appli-
cations. Consequently, there is a growing need for an efficient and effective camera relocalization method to complement the
advantages of 3DGS. This paper presents a camera relocalization method, namely GauLoc, in a scene represented by 3DGS.
Unlike previous methods that rely on pose regression or photometric alignment, our proposed method leverages the differential
rendering capability provided by 3DGS. The key insight of our work is the proposed implicit featuremetric alignment, which
effectively optimizes the alignment between rendered keyframes and the query frames, and leverages the epipolar geometry
to facilitate the convergence of camera poses conditioned explicit 3DGS representation. The proposed method significantly
improves the relocalization accuracy even in complex scenarios with large initial camera rotation and translation deviations.
Extensive experiments validate the effectiveness of our proposed method, showcasing its potential to be applied in many real-
world applications. Source code will be released at https://github.com/xinzhe11/GauLoc.

CCS Concepts
• Computing methodologies → Image-based rendering; Computer vision;

1. Introduction

Camera relocalization is a crucial task in 3D vision and embod-
ied intelligence, involving estimating camera poses in known envi-
ronments (i.e., maps). This capability is fundamental for develop-
ing camera-based positioning systems used in various areas such
as autonomous driving, robotics, and augmented reality [NB17,
SHR∗15, SLK17, WWD∗20, XDW∗22, GCL∗24]. However, con-
ventional map-based navigation approaches often adopt simple 3D
scene representations, such as point clouds [SLK17, GB21], vox-
els [SPGS18, YK22], or meshes [PKS22, LYC∗23], which tend to
over-discretize the original 3D scenes, leading to a mismatch be-
tween the digital map and the real-world environment.

Neural Radiance Field (NeRF) [MST∗21] has revolutionized
the representation of scenes by offering a continuous and implicit
field. By employing volumetric rendering techniques, NeRF effec-
tively bridges the gap between digital maps and real-world scenes,
which has garnered significant interest, both in terms of advanc-
ing its efficiency and exploring its potential for replacing tradi-
tional map representations. Despite the impressive performance
demonstrated by NeRF and its variants on real-world data, achiev-
ing real-time efficiency often requires specialized hardware or
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customized programs. To overcome this, 3D Gaussian Splatting
(3DGS) [KKLD23] provides an explicit representation with effi-
cient training and real-time rendering capabilities, making it ac-
cessible for deployment on a variety of devices ranging from mo-
bile phones to high-performance machines. This accessibility po-
sitions 3DGS as a promising map representation for robotics and
3D graphics applications, particularly in the realm of 3D visual
navigation systems. With its potential to provide efficient and ac-
cessible 3D rendering, 3DGS is poised to gain popularity and sig-
nificantly advance computer vision, graphics, and embodied intel-
ligence. Specifically, by employing 3DGS as the map representa-
tion, the RGB, depth, and semantic images can be rendered on the
fly using a given camera pose. This eliminates the need to store and
cache a large number of precomputed images in the map, while
point feature map representation requires retaining keyframes and
depth maps within the map. Leveraging 3DGS for map represen-
tation significantly reduces storage requirements, particularly for
localization tasks in large-scale environments.

Previous studies have explored relocalization within neural
scenes, such as NeRF-Loc [LNLW23] and iNeRF [YCFB∗21], etc.
These works leverage the advantages of implicit field representa-
tion, often utilizing photometric loss that can be seamlessly prop-
agated to the input camera poses. In contrast, the explicit, discrete
representation in 3D space employed by 3DGS poses challenges

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://orcid.org/0009-0003-7432-9837
https://orcid.org/0009-0005-5683-5044
https://orcid.org/0000-0003-0608-9619
https://orcid.org/0000-0001-8012-1547
https://github.com/xinzhe11/GauLoc


2 of 12 Z. Xin & C. Dai & Y. Li & C. Wu / GauLoc: 3D Gaussian Splatting for Camera Relocalization

Figure 1: Our proposed GauLoc leverages a coarse localization
and employs a combination of neural and featuremetric optimiza-
tion techniques to estimate the pose of query images. The errors in
translation and rotation are showcased below the rendered images,
corresponding to the optimized poses.

in terms of optimization and stability. Additionally, the rendering
process for each guess frame in implicit fields is time-consuming,
whereas 3DGS excels in real-time rendering, enabling more effi-
cient camera relocalization. To address these considerations, we
propose GauLoc, drawing inspiration from previous NeRF-based
approaches. Our main goal is to design an efficient camera relo-
calization algorithm to estimate the SE(3) pose within a map rep-
resented by 3DGS. Our proposed GauLoc adopts a two-step ap-
proach, starting with place recognition to efficiently focus on poses
close to the target optimal pose. We then introduce an implicit
alignment scheme that incorporates point and feature matching
from image features to alleviate the difficulties in pose optimiza-
tion. Furthermore, we leverage ideas from epipolar geometry, i.e.,
Perspective-n-Point (PnP) [FB81a], to facilitate the convergence
of the explicit 3D Gaussian map. Our emphasis is on designing a
method well-suited for real-world applications, which require fast
computation, and robustness to significant viewpoint changes. As
a result, our proposed GauLoc achieves robust camera relocaliza-
tion even in the case of poor initial poses and varied environmental
changes, such as motion blur, reflective surfaces, repeating struc-
tures, and textureless areas. The contributions of this paper can be
summarized as follows.

• We propose a novel camera relocalization method specifically
designed 3DGS scenes, outperforming existing methods, such as
scene coordinate regression and NeRF-based methods, in terms
of efficiency and precision.

• We introduce an implicit featuremetric alignment meachism,
which applies pixel- and region-wise warping to align the fea-
tures for camera relocalization, providing a continuous space for
easier optimization.

• We conduct extensive experiments on two widely used datasets

for benchmarking camera relocalization. Experimental results
validate the effectiveness and efficiency of our proposed method.

2. Related Work

2.1. Pose Optimization within Scenes

Our research work focuses on pose optimization within scenes. The
pioneering works involve Structure-from-Motion (SfM) [SF16,
SSS06] and dense visual SLAM [MAMT15, QLS18]. With the
rapid development of deep learning and neural representation, the
body of literature in this area is getting expanded, with notable
contributions such as [WWX∗21] proposes a joint optimization ap-
proach for camera poses and scene representations. [LMTL21] in-
tegrates bundle adjustment techniques for more accurate 3D recon-
structions. [JAC∗21] introduces a self-calibration mechanism for
pose optimization. [BWL∗23] presents an innovative approach for
pose estimation using neural implicit fields. These studies have en-
riched the field, advancing accuracy and flexibility in pose estima-
tion and scene reconstruction. In the context of large-scale scene
reconstruction, LocalRF [MLG∗23] introduces a progressive op-
timization strategy to improve view synthesis robustness, which
entails a significant time investment in the optimization process.
Neural SLAM approaches such as [SLOD21, WWA23, ZPL∗22,
ZPL∗24, LGY∗23, XYZW24, JCF23] demonstrate the effective-
ness of optimizing poses in neural implicit scenes. More recently,
3DGS has revolutionized the field of neural 3D reconstruction and
mapping with its real-time rendering performance and hardware
compatibility. A great portion of works appear such as Photo-
SLAM [HLCY24], SplaTAM [KKJ∗24], GS-SLAM [MMKD24],
Colmap-free 3DGS [FLK∗24], and GGRt [LGZ∗24], which con-
sider a time-continuous image sequence and uses local 3DGS to
estimate the relatively small pose transformation between adjacent
frames, our method addresses the relocalization problem. In our
approach, the reference and query images are not sequentially ad-
jacent, and a prior relative pose cannot be obtained. Building upon
the success of these existing approaches, our work presents a novel
solution for RGB-D camera relocalization specifically designed for
indoor scenes by introducing a feature warping loss, which helps
mitigate errors caused by non-repetitive feature point extraction
that cannot be resolved by reprojection and keypoint warping loss.

2.2. Camera Relocalization from Images

There exist various localization approaches relying on local fea-
tures such as [SDMR20] and commonly use Structure-from-
Motion (SfM) point clouds to represent the scene. The query pose is
estimated by matching features between the query images and the
3D points in the scene model, utilizing a minimal solver [PN18]
within a RANSAC scheme [FB81b, BNIM20]. Hierarchical lo-
calization approaches [IZSB09, SCSD19, HCG∗20] enhance scal-
ability by employing intermediate image retrieval [GARL17,
RARdS19] to focus on smaller parts of the scene for 2D-3D
matching. Neural networks can be trained to regress the cam-
era pose of a query image, either through direct pose regres-
sor [CLWP22, MPT∗22], scene coordinate regression [WWD∗20,
LWZ∗20, XDW∗22, GCL∗24, BR21, BR18, BR21], and scene-
agnostic estimation [YBT∗19, TTH∗21]. The recent progress in
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NeRF and 3DGS is transforming map representation and open-
ing up opportunities for improved camera relocalization [GDP∗22,
LNLW23]. iNeRF [YCFB∗21] estimates camera translation and
rotation with respect to a 3D object or scene using NeRF while
lengthy optimization iteration is required. To improve efficiency,
Loc-NeRF [MAS∗23] introduces parallel Monte-Carlo sampling
using particle filtering. CROSSFIRE [MPB∗23] aligns dense lo-
cal features obtained from volume rendering of implicit fields for
camera relocalization. In contrast, our proposed method uses an ex-
plicit 3DGS representation and aligns features by warping between
frames. A recent work [SWZ∗23] also employs a 3DGS represen-
tation with keypoint matching for camera relocalization but focuses
on object-level scenes by explicitly imposing losses on the matched
keypoints.

3. Proposed Method

3.1. Overview

As shown in Fig. 2, our proposed method uses a 3D Gaussian rep-
resentation of the spatial map, capturing both the scene’s geom-
etry and visual appearance. The map consists of two parts, a GS
map and a database, where the database stores the global features
and poses of all keyframes. Following the relocalization parag-
diam [XCL∗19], our method consists of a place recognition mod-
ule and a pose estimation module. The place recognition module
identifies the most similar keyframes in the map, providing an ini-
tial pose through feature matching and PnP, while the pose esti-
mation module refines the pose iteratively. We optimize the SE(3)
pose by employing an end-to-end optimizer that minimizes the loss
incurred by rendering each pixel’s color based on inferred cam-
era parameters. In addition, we introduce an implicit featuremetric
alignment scheme to enhance geometric and semantic consistency
between the rendered frame and the query frame, enabling accurate
localization even in complex scenarios. The geometric consistency
leverages pixel disparities among matched key points to facilitate
rapid convergence toward the correct position. The semantic con-
sistency leverages keypoint features to mitigate interference caused
by mismatches.

3.2. 3DGS Map Representation

As map-based navigation systems need maps that are effi-
cient not only in storage but also in processing internal data.
This requirement makes NeRF [MST∗21] less suitable; however,
3DGS [KKLD23] is an ideal technique. 3DGS proposes to use ex-
plicit 3D Gaussian as its primary components to represent a scene.
Each 3D Gaussian is represented by a 3D point that possesses
Gaussian attributes, and can be denoted by the mathematical func-
tion e−

1
2 (xxx−µµµ)⊺ΣΣΣ

−1(xxx−µµµ), where xxx represents the 3D coordinates of
the point, µµµ and ΣΣΣ represent the spatial mean and covariance ma-
trix. Each Gaussian point is also associated with an opacity η, scale
s, and a view-dependent color ccc represented by spherical harmonic
coefficients fff . During the forward process from a specific view-
point, the 3D Gaussians undergo projection onto the view plane
through splitting. The pixel color is produced by alpha-blending a

sequential stacking of N Gaussians:

C = ∑
i∈N

Tiαiccci with Ti =
i

∏
j=1

(1−α j). (1)

We refer to the detailed splatting computations to [KKLD23]. In
short, the opacity factor α is computed by multiplying η with the
contribution of the 2D covariance, calculated from ΣΣΣ

′ and the pixel
coordinate in image space. The covariance matrix ΣΣΣ is parameter-
ized using a unit quaternion qqq and a 3D scaling vector sss. Simply
put, within the 3DGS framework, a 3D map G is represented by a
collection of 3D Gaussians, i.e., G = {Pi} , where each Gaussian
Pi is parameterized as (µµµi,ΣΣΣi,qqqi,sssi,ηi, fff i).

3.3. SE(3) Pose Optimization

Consider a 3DGS map G constructed by a set of keyframe features
K, and a given query image Iq, the problem we tackle is to effi-
ciently and accurately obtain the SE(3) pose P of Iq within the map
G. Directly optimizing SE(3) pose within G from scratch is chal-
lenging. Thus, we follow a coarse-to-fine strategy to decompose
the relocalization problem using a place recognition module and
a pose estimation module. In particular, we use cosine distance to
search a reference keyframe Ir in the keyframe set K that exhibits
the largest similarity with the query image. This can be achieved by
minimizing the following function:

Ir = argmin
k∈K

∥GFq −GFk∥2 (2)

where GF is the global feature of this image. The pose of Ir is em-
ployed to render RGB and depth images from the 3DGS map to
calculate the prior pose of Iq through feature matching for the later
fine-level pose optimization. Our proposed iterative optimization
method incorporates the geometric coordinates and pixel dispari-
ties between the rendered image and query image to measure the
error in the image space. This can be flowed to the pose objective
by gradient propagation. However, in our practice, we observe that
directly propagating the gradient to the pose can lead to unstable
optimization. This may be attributed to the explicit representation
employed by 3DGS. To tackle this problem, we use pixel-wise ren-
dering loss. Concretely, we render the RGB frame Îq given the iter-
ative updated pose T ′ for computing the pixel-wise rendering loss
functions, which are formulated as following L1 and LSSIM errors.
We incorporate both SSIM and L1 loss, as SSIM loss excels in
preserving structural information and perceptual quality, leading to
improved performance in image processing and generation tasks. It
is worth noting that Eq. 3 is identical to the rendering loss used in
map reconstruction.

Lr
RGB = ∑

i
(||̂Iq − Iq||1 + ||̂Iq − Iq||SSIM), (3)

3.4. GS-based Featuremetric Alignment

To further enhance the accuracy and efficiency of pose optimiza-
tion in the context of 3DGS, we propose an implicit feature align-
ment scheme by explicitly supervising the spatial relationship be-
tween the reference and query frames. Only employing rendering
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Figure 2: Our proposed GauLoc begins with place recognition, retrieving the most similar keyframe from the map. At the position of the
keyframe, RGB and depth images are rendered by 3DGS map representation. After extracting and matching local features between the query
image and keyframe, 3D-2D correspondences can be established according to 2D-2D matches and the rendered depth map. Then, the initial
camera pose is acquired through a basic PnP solver with Ransac. Then, GauLoc employs an iterative optimization approach to estimate the
pose of query images. This estimation is achieved by combining explicit rendering and implicit featuremetric alignment optimization.

loss to maintain the consistency of appearance similarity can lead
to failures where there is a significant pose difference between the
frames, resulting in suboptimal optimization and convergence to-
wards local minima. Our implicit feature alignment, inspired by
previous works [ZDJF14, DRMS07, WSSZ23], introduces explicit
supervision through warping to enhance relocalization accuracy.
Specifically, we employ SuperPoint [DMR18], a deep learning-
based method designed for joint detection and description of in-
terest points, to extract local descriptors LF from each frame,
followed by using LightGlue [LSP23] for feature map matching,
which integrates context through self- and cross-attention units
with positional encoding. This approach allows for introspection
of the feature maps and prediction of correspondences Si j between
frames based on pairwise similarity and unary matchability.

We utilize the Structural Similarity Index (SSIM) with 3 × 3
patches, enabling the computation of the RGB warping loss. Based
on the 2D-2D correspondences established in the place recognition
module and the rendered depth image of the reference keyframe,
given an inlier keypoint i in the rendered reference keyframe as Îri,
its matched keypoint in the query image is Iq j. The warping point
of Îri in the query image, named Iqi′ , can be calculated as,

Iqi′ = Π(DriR
q
r Π

−1(̂Iri)+ tq
r ). (4)

where D̂ri is the rendered depth of Îri, Π is the projection matrix of
intrinsic camera parameter and Rq

r and tq
r are the relative rotation

and translation from the reference keyframe to the query image.

By croping a patch Pqi′ centered at Iqi′ and a patch Pqj centered

at Iq j, we obtain the corresponding warped patch. To exclude the
warping of invisible patches, we utilize the visibility mask M from
a previous study [DBD∗22]. The warping RGB loss is defined by
Eq. 5.

Lw
RGB =

∑(i, j)∈Si j
Mi ·SSIM(Pqi′ ,Pqj)

∑i Mi
. (5)

We further incorporate featuremetric descriptors in image space,
providing additional supervision and guidance for enhanced robust-
ness of the optimization. The feature points and feature maps are
supervised via pixel-wise loss functions (Eq. 6), where Lw

FP mea-
sures the pixel distance and Lw

FM measures the feature distance.

Lw
FP =

∑(i, j)∈Si j
Mi||Iqi′ − Iq j||2
∑i j Mi

.

Lw
FM =

∑(i, j)∈Si j
Mi · ||LF j(Iqi′)−LF j(Iq j)||2

∑i j Mi
.

(6)

Overall Loss. In our relocalization framework, we put all the loss
terms together to form the overall loss for the optimization, α and
β are utilized to balance the ratios of different losses. Because the
rendering loss is for all pixels of the whole image, and the warping
loss is only for the feature points, β is used to maintain the propor-
tion of the two losses and set as a constant value. α is calculated
as the square of pixel errors between pairs of feature points. When
the prior pose is inaccurate, in the early stages of iteration, α is
large, and the warping loss dominates the optimization, leveraging
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the rich scene texture to converge the pose near the global optimum
rapidly. Then, the rendering loss plays a major role in optimizing
the pose more finely and reducing the impact of mismatches.

L=
1

αβ
Lr

RGB +α(Lw
RGB +Lw

FP +Lw
FM). (7)

4. Experiments

4.1. Experimental Setup

Datasets. We utilize the widely-used visual relocalization datasets
7-Scenes [SGZ∗13] and 12-Scenes [VDN∗16], both were captured
using a hand-held camera with a structure light sensor scanning
depth images, providing ground truth poses for each image. Al-
though the scenes are static with only minor illumination changes,
they still present challenging conditions including motion blur, re-
flective surfaces, repeating patterns, and textureless areas. In 12-
Scenes, both color and depth images are well registered. For 7-
Scenes, we adopt [BR21] to register the color and depth images
through calibration. Each scene consists of multiple sequences,
and training and testing sequences have already been separated by
dataset authors.

Evaluation Metrics. We evaluate the precision of relocalization
using median translation (cm) and rotation (°) errors. Additionally,
we employ the accuracy of relocalization, where the correct relocal-
ization is deemed if the rotation error is below 5° and the translation
error is below 5cm.

Baselines. To validate the effectiveness of our method
comprehensively, we benchmark it against various represen-
tative localization techniques. Absolute pose regression net-
works such as DFNet [CLWP22] and LENS [MPT∗22] are
included. Scene coordinate regression methods like HAC-
Net [LWZ∗20], DSAC++ [BR18], and DSAC* [BR21] are also
considered. Additionally, scene-agnostic estimation methods in-
cluding SANet [YBT∗19] and DSM [TTH∗21] are part of the com-
parison. For high-level feature-based pipelines, PixLoc [SUL∗21]
and InLoc [TOS∗18] are included. Furthermore, we compare
our method with learning-based approaches utilizing implicit
map representations like FQN [GDP∗22], NeRFLoc [LNLW23],
and CROSSFIRE [MPB∗23]. However, we do not evaluate our
method against iNeRF [YCFB∗21] and related methods such
as iComMA [SWZ∗23] as they primarily focus on object-level
datasets.

Implementation Details. We use the Adam optimizer [KB14]
for both camera pose and Gaussian parameter optimization. For
each scene in both 7-Scenes and 12-Scenes datasets, the Gaus-
sian models are pre-trained using all available training sequences
with ground truth poses. Depth images are used for training to
recover better geometry structures, but not used in relocalization,
since depth sensors are not available in most application scenar-
ios. To remove redundant information and ensure a balanced map
representation, we selected one image as a keyframe for every 20
training images and extracted global features for each keyframe us-
ing [XCL∗19] in all experiments. These global features are then
utilized for place recognition during the relocalization phase. The

map of each scene consists of two parts, a Gaussian model and a
database, the database stores the global features and poses of all
keyframes. There’s no need to store any images in the map, we
can effortlessly render RGB and depth images from the Gaussian
model by providing a pose. Utilizing 3DGS for map representa-
tion effectively reduces storage requirements, especially for local-
ization in large-scale environments. As for relocalization, the top
three keyframes are retrieved from the database by cosine distance
through place recognition. At most 128 SuperPoint [DMR18] key-
points are extracted per image. After matching the query image
with all three keyframes using LightGlue [LSP23], the one with
the most inliers is set as the reference image and used to calcu-
late the prior pose of the query image by PnP(Perspective-n-Point).
Then, the pose is fine-tuned by integrating rendering and warping
losses iteratively, the iteration number is 50, and β is 10 for all ex-
periments.

4.2. Comparison with Baseline Methods

Tab. 1 shows the comprehensive results for all seven scenes in the
7-Scenes dataset. Our method demonstrates superior localization
accuracy, achieving the best overall performance. Unlike methods
such as LENS [MPT∗22] and DSM [TTH∗21], which solely rely
on implicit map representations, our 3DGS map enhances scene
generalization. In comparison to local feature-based methods like
InLoc [TOS∗18] and PixLoc [SUL∗21], which often struggle with
repetitive and mismatched feature points, our method integrates
rendering and warping losses, enabling rapid convergence of the
camera pose. Furthermore, methods like NeRFLoc [LNLW23] and
CROSSFIRE [MPB∗23] establish 3D-2D correspondences using
NeRF and employ a basic PnP solver with RANSAC, the interfer-
ence from mismatches affects localization accuracy. Our approach
optimizes the camera pose in an end-to-end manner and incorpo-
rates feature-metric losses and rendering loss to mitigate the impact
of mismatching.

Additionally, Tab. 2 presents the accuracy of relocalization on
the 12-Scenes dataset, our method achieves the highest success rate,
surpassing both traditional and deep learning-based approaches.
Detailed results of each scene are shown in Tab. 3. SuperPoint+PnP
indicates the prior pose accuracy, after iteratively fine-tuning the
pose employing rendering and warping losses, the final results have
been significantly improved.

4.3. Ablation Study

We conduct ablation studies to justify the individual components
of the proposed method by testing different combinations of losses
and the effectiveness of the prior pose. Losses include RGB L1
loss, SSIM loss, patch-wise RGB warping loss, keypoint warping
loss, and pixel-wise feature warping loss. The prior pose includes
using PnP results or the pose of best matched keyframe. Tab. 5
presents the average median translation (cm) and rotation (°) errors
across all scenes in 7-Scenes [SGZ∗13]. When using the prior pose
from PnP, the result of only using rendering loss is better than only
using warping loss. This is due to the interference from the key-
point repeatability and mismatches, which cannot be eliminated
during pose optimization. Incorporating feature warping supervi-
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Table 1: Evaluation results for the 7-Scenes indoor dataset. Median translation (cm) and rotation (°) errors are reported for each scene, and
Acc. is the average accuracy of all scenes. The results of other methods are from [LNLW23] and [MPB∗23], which have the precision at
the centimeter level. We present the results in terms of millimeters.

Method
Errors(cm/°) ↓

Acc.(%) ↑
Chess Fire Heads Office Pumpkin Kitchen Stairs Avg.

SANet [YBT∗19] 3.0/0.9 3.0/1.1 2.0/1.5 3.0/1.0 5.0/1.3 4.0/1.4 16.0/4.6 5.0/1.7 68.2
DFNet [CLWP22] 5.0/1.9 17.0/6.5 6.0/3.6 8.0/2.5 10.0/2.8 22.0/5.5 16.0/3.3 12.0/3.7 -
LENS [MPT∗22] 3.0/1.3 10.0/3.7 7.0/5.8 7.0/1.9 8.0/2.2 9.0/2.2 14.0/3.6 8.0/3.0 -

FQN-MN [GDP∗22] 4.0/1.3 10.0/3.0 4.0/2.4 10.0/3.0 9.0/2.4 16.0/4.4 140.0/34.7 28.0/7.3 -
InLoc [TOS∗18] 3.0/1.1 3.0/1.1 2.0/1.2 3.0/1.1 5.0/1.6 4.0/1.3 9.0/2.5 4.0/1.4 66.3
DSM [TTH∗21] 2.0/0.7 2.0/0.9 1.0/0.8 3.0/0.8 4.0/1.2 4.0/1.2 5.0/1.4 3.0/1.0 78.1

HACNet [LWZ∗20] 2.0/0.7 2.0/0.9 1.0/0.9 3.0/0.8 4.0/1.0 4.0/1.2 3.0/0.8 3.0/0.9 84.8
PixLoc [SUL∗21] 2.0/0.8 2.0/0.7 1.0/0.8 3.0/0.8 4.0/1.2 3.0/1.2 5.0/1.3 3.0/1.0 75.7

NeRF-Loc [LNLW23] 2.0/1.1 2.0/1.1 1.0/1.9 2.0/1.1 3.0/1.3 3.0/1.5 3.0/1.3 2.0/1.3 89.5
CROSSFIRE [MPB∗23] 1.0/0.4 5.0/1.9 3.0/2.3 5.0/1.6 3.0/0.8 2.0/0.8 12.0/1.9 4.0/1.4 -

DSAC++ [BR18] 2.0/0.5 2.0/0.9 1.0/0.8 3.0/0.7 4.0/1.1 4.0/1.1 9.0/2.6 4.0/1.1 74.4
DSAC* [BR21] 2.0/1.1 2.0/1.2 1.0/1.8 3.0/1.2 4.0/1.3 4.0/1.7 3.0/1.2 3.0/1.4 85.2
SuperPoint+PnP 2.1/0.7 2.5/0.9 1.6/0.9 3.2/0.9 4.0/1.1 3.5/1.2 6.2/1.5 3.3/1.1 76.4

Ours 1.3/0.5 1.3/0.6 1.1/0.8 1.9/0.6 2.0/0.7 2.6/1.0 1.4/0.4 1.7/0.7 93.1

Table 2: The accuracy for indoor localization on the 12Scenes
dataset. The results of other methods are from [LNLW23]

Method Accuracy(%) ↑
ORB+PnP 53.7

DSAC++ [BR18] 96.8
SuperPoint + PnP 97.6
DSAC* [BR21] 99.1

HACNet [LWZ∗20] 99.3
NeRF-Loc [LNLW23] 99.8

Ours 99.9

sion to maintain the semantic information’s consistency around fea-
ture points is beneficial to mitigate outliers. For experiments using
the keyframe pose as input, the relocalization performance is the
opposite of the above description. The result of only warping loss
is better than only rendering loss. When using only render losses,
the abundance of weak texture areas, similar regions, and planes in
indoor scenes hinders accurate camera pose estimation under poor
initial poses. Incorporating keypoint and pixel-wise feature warp-
ing loss significantly enhances accuracy. The point-to-point con-
straint remains unaffected by scene appearance changes and en-
sures that optimization consistently converges around the global
optimum when the matching is correct. For experiments using the
reference keyframe poses as input, the optimization iteration is set
to 100 to ensure the convergence of the pose regression.

4.4. Robustness to Viewpoint Changes

Place Recognition aims to retrieve the most similar keyframes,
which means that in most cases, the viewpoint changes between
the query image and keyframe are not very drastic. To evaluate
the viewpoint change robustness of our method, we randomly se-
lect some keyframes within several certain thresholds, The results

Table 3: Evaluation results for the 12Scenes localization dataset.
Median translation (cm) and rotation (°) errors and accuracy are
reported for each scene.

Scene
SuperPoint+PnP Ours
Acc. Errors Acc. Errors

apt1_kitchen 1.00 0.8/0.43 1.00 0.6/0.36
apt1_living 0.98 1.4/0.52 1.00 1.1/0.44
apt2_bed 0.95 2.1/0.83 1.00 1.7/0.75

apt2_kitchen 1.00 1.1/0.63 1.00 1.1/0.54
apt2_living 1.00 1.3/0.46 1.00 0.9/0.40
apt2_luke 0.97 1.5/0.62 0.99 0.9/0.46

office1_lounge 0.95 2.0/0.53 0.99 1.2/0.47
office1_gates362 0.98 1.2/0.50 1.00 1.2/0.50
office1_manolis 0.98 1.1/0.51 1.00 1.0/0.46
office1_gates381 0.99 1.3/0.59 1.00 1.1/0.52

office2_5 0.91 1.5/0.63 1.00 0.9/0.41
office2_5b 0.97 1.6/0.53 1.00 1.2/0.43

are shown in Tab. 4. Notably, in indoor scenes like 7-Scenes, even
slight angular deviations can lead to dramatic reductions in the
common viewing area. In the early stages of iteration, the warp-
ing loss dominates the optimization, leveraging the rich scene tex-
ture to converge the pose near the global optimum rapidly. Then,
the rendering loss plays a major role in optimizing the pose more
finely and reducing the impact of mismatches.

4.5. Efficiency Analysis

In Tab. 6, we analyze the elapsed time of each stage. It is worth not-
ing that SuperPoint and LightGlue do not require a backward pass
during relocalization. The experiments are conducted on a desk-
top PC with a 3.60GHz Intel Core i9-9900K CPU and an NVIDIA
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Table 4: Analysis of the impact of prior pose accuracy and the robustness of our method to viewpoint changes. As the difference between the
prior pose and the ground truth pose increases, the viewpoint change also increases. δt is the translation difference, varying within ±20cm.
δr is the rotation difference, varying within ±1◦. The median translation (cm) and rotation (°) errors are reported for all scenes of the
7Scenes dataset. The effectiveness of the rendering and warping losses are also evaluated.

Pose
PnP

Losses
PnP

Losses
PnP

Losses
PnP

Losses
Render Warp Render Warp Render Warp Render Warp

✓ × × ✓ ✓ × ✓ × ✓ ✓ ✓ ✓

δt = 1m
δr = 10◦ 4.7/1.5 3.3/1.0 4.5/1.2 3.0/0.9
δr = 30◦ 7.2/2.1 4.1/1.4 6.8/1.9 3.5/1.3
δr = 40◦ 11.5/3.6 6.9/2.6 11.5/3.6 4.6/2.0
δr = 50◦ 14.3/4.6 7.6/3.1 12.1/4.5 6.2/2.6

δt = 2m
δr = 10◦ 8.6/2.4 4.8/1.5 8.2/1.8 4.2/1.4
δr = 30◦ 9.8/2.4 5.7/1.6 10.4/2.2 5.1/1.4
δr = 40◦ 13.5/3.4 7.0/2.1 13.7/3.3 6.3/2.1
δr = 50◦ 19.4/4.6 8.8/3.0 16.5/4.3 8.8/2.9

δt = 3m
δr = 10◦ 36.2/6.0 60.3/13.8 36.8/5.7 21.4/3.8
δr = 30◦ 49.8/9.3 30.0/7.5 36.1/7.1 19.3/3.9
δr = 40◦ 35.6/9.1 22.4/5.9 34.1/8.0 14.8/4.3
δr = 50◦ 35.5/9.6 66.4/21.5 37.8/9.5 26.3/4.6

Table 5: Average median translation (cm) and rotation (°) errors
across all 7Scenes, assessed using different prior poses and combi-
nations of losses. ‘RF’ indicates the pose of the reference keyframe

Prior Render Losses Implicit Warp Losses Errors
Pose SSIM L1 RGB Keypoint Feature (cm/°) ↓
PnP × × × × × 3.3/1.10
PnP × × ✓ ✓ ✓ 2.8/0.99
PnP ✓ ✓ × × × 1.8/0.75
PnP ✓ ✓ ✓ ✓ × 1.7/0.70
PnP × ✓ ✓ ✓ ✓ 2.2/0.84
PnP ✓ ✓ ✓ ✓ ✓ 1.7/0.68

RF ✓ ✓ × × × 5.1/1.74
RF × × ✓ ✓ ✓ 3.4/1.20
RF ✓ ✓ × ✓ × 2.5/0.94
RF ✓ ✓ ✓ ✓ × 2.1/0.77
RF × ✓ ✓ ✓ ✓ 2.4/0.91
RF ✓ ✓ ✓ ✓ ✓ 1.9/0.76

RTX 3090 GPU. The whole relocalization process includes retriev-
ing the top three keyframes, extracting keypoints and matching
between the query image and all three keyframes, calculating the
prior pose of the query image by PnP, and optimizing the pose by
integrating rendering and warping losses iteratively. As shown in
Tab. 6, the whole process can be done in 1 second, which is enough
for the camera relocalization problem and indicates the ability of
the proposed method to operate in practical applications. More-
over, we have observed that in the majority of cases, the pose tends
to converge after roughly 30 rounds of iterations. Speedup can be
achieved by monitoring the reduction of losses and stopping early
when converging.

Table 6: Elapsed time by each stage of the proposed method.

Stage Elapsed time
Global feature extraction 16ms / image

Place recognition 0.009ms / image pair
SuperPoint extraction 12ms / image

LightGlue matching 30ms / image pair
PnP 2ms / image pair

Opt by gaussian 15ms / iter

Table 7: Comparison with NeRF-Loc [LNLW23] using various ini-
tializations, averaged on all scenes of 7-Scene [SGZ∗13]. Follow-
ing the same experimental setting.

Method Good Init. Total Accuracy ↑
NeRF-Loc ✓ 89.5%
[LNLW23] × 81.2%

Ours
✓ 93.1%
× 85.6%

4.6. Qualitative Results and Failure Discussion

Fig. 3 provides visualizations of failure cases. In the first case,
specifically in the pumpkin scene of 7-Scenes, the matching results
reveal that most of the inliers are mismatches, primarily caused by
mirror reflections. This leads to an incorrect camera pose due to the
presence of a large, texture-consistent plane in the image, namely
the cabinet. This issue could be addressed by incorporating seman-
tic estimation and implementing stricter consistency checks. The
second failure case occurs in the stairs scene of 7-Scenes. Despite
having correct matching results, each stair step appears very simi-
lar in terms of texture and depth, causing the render loss to become
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Figure 3: Visualizations of pose estimation failures resulting from
mirror reflection and repetitive textures.

Figure 4: Error bars representing translation and rotation, high-
lighting the effectiveness of SSIM loss and comparing our results
with CROSSFIRE [MPB∗23] on the Head scene of 7Scenes.

trapped in a local minimum. To potentially overcome this issue,
heuristic training strategies and progressive training could be ex-
plored as future research directions. Fig. 1, Fig. 5 and Fig. 6 visual-
ize successful relocalization cases, showing rendered views, inlier
matches, and relocalization errors. To better showcase the view-
point changes, all prior poses for visualization are the poses of ref-
erence keyframes.

4.7. Comparision with NeRF-based Methods

In this section, we compare our approach to NeRF-based methods,
including NeRF-Loc [LNLW23] and CROSSFIRE [MPB∗23], to
showcase the effectiveness of the proposed feature alignment losses

Table 8: Comparison with CROSSFIRE [MPB∗23] using various
initializations, on the Chess scene of 7-Scene [SGZ∗13]. Follow-
ing the same experimental setting, good initialization means getting
prior from image retrieval, and bad means using the same prior for
all test images.

Method Good Init. Error (cm/°) ↓
CROSSFIRE ✓ 2.0/0.7

[MPB∗23] × 12.0/2.8

Ours
✓ 1.3/0.5
× 6.4/2.0

and the use of 3DGS as the map representation. First, we vali-
date the effectiveness in terms of robustness to viewpoint changes.
As demonstrated in Tab. 7 and Tab. 8, regardless of whether the
initial pose is good or not, our method consistently achieves the
best results in both the single scene of Chess and the overall ac-
curacy across all scenes in 7-Scenes [SGZ∗13]. Unlike NeRF-
Loc [LNLW23] and CROSSFIRE [MPB∗23], which rely on ren-
dered depth information to provide 2D-3D matches for pose com-
putation using PnP + RANSAC and optimize over a sparse set of
pixels, our method uses per-pixel dense photometric errors. Lever-
aging 3DGS, which offers significantly faster rendering, our ap-
proach constructs a loss with dense pixels, helping to mitigate er-
rors from sparse point matching while maintaining rapid viewpoint
changes. The same performance is evident in Fig. 4. When using
the same SSIM rendering loss for pose optimization, our method
exhibits lower localization errors, while the mismatches negatively
impact the localization accuracy of CROSSFIRE. Our approach
optimizes the camera pose in an end-to-end manner, incorporat-
ing feature-metric losses and rendering loss to reduce the effects
of mismatching. Besides, we compare the storage between our
method and NeRF-Loc [LNLW23] and CROSSFIRE [MPB∗23]
on the 7Scenes dataset. The storage requirement for NeRF-Loc
is 25.1 MB, while CROSSFIRE requires 50 MB (48 MB for the
hash tables and 2 MB for the neural networks). In contrast, our
method only needs approximately 20 MB for the Gaussian points
and their parameters, considering the real-time rendering capabil-
ity, our method is especially suitable for deployment on a variety
of devices. Moreover, another key reason for choosing 3DGS as the
map representation over NeRF is our ultimate goal of developing
a comprehensive SLAM system, with GauLoc as a crucial compo-
nent. After loop closure, which addresses the cumulative error of
poses, the explicit 3DGS helps refine the map to maintain global
consistency.

5. Conclusion and Future Work

This paper introduces a camera relocalization method for scenes
represented by 3DGS. Unlike previous approaches relying on pose
regression or photometric alignment, our method utilizes the dif-
ferential rendering capabilities of 3DGS. The proposed implicit
featuremetric alignment optimizes the alignment between rendered
frames and associated close frames, facilitating the convergence
of camera pose estimation. Extensive experiments demonstrate the
effectiveness of our approach, highlighting its potential for vari-
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ous real-world applications in robotics. Our current optimization
routine requires pre-calibrating the camera’s intrinsic parameters.
However, we believe that optimizing camera intrinsics and imple-
menting online calibration is worth further investigation, and we
plan to explore this idea in future work.
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Figure 5: Visualization of rendered views from prior and opt poses, inlier matches, and relocalization errors for some sample images in
7-Scenes dataset.
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Figure 6: Visualization of rendered views from prior and opt poses, inlier matches, and relocalization errors for some sample images in
12-Scenes dataset.
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